
When a process is to be loaded in memory (RAM) there may be some free spaces in RAM and some

preoccupied space. So, we have three basic methods for allocation of space to the incoming process:

First Fit

In the first fit approach is to allocate the first free partition or hole large enough which can accommodate

the process.

Best Fit

The best fit deals with allocating the smallest free partition which meets the requirement of the requesting

process. This algorithm first searches the entire list of free partitions and considers the smallest hole that is

adequate.

Worst fit

In worst fit approach is to locate largest available free portion so that the portion left will be big enough to

be useful. It is the reverse of best fit.

As processes are loaded and removed from memory, the free memory space is broken into little pieces. It

happens after sometimes that processes cannot be allocated to memory blocks considering their small size

and memory blocks remains unused. Even though the total free space may be larger than the required size

but the small chunks are not together so there is no continuous memory chunk sufficient for the incoming

process. This problem is known as (extremal) Fragmentation.

Even if a block is allocated to a process another type of fragmentation is possible where the block allocated

may be slightly bigger than that needed by the process, thus creating internal fragmentation.

Fragmentation is of two types –

1
External fragmentation

Total memory space is enough to satisfy a request or to reside a process in it, but it is not

contiguous, so it cannot be used.

2
Internal fragmentation

Memory block assigned to process is bigger. Some portion of memory is left unused, as it

cannot be used by another process.

External fragmentation can be reduced by compaction or shuffle memory contents to place all

free memory together in one large block. To make compaction feasible, relocation should be dynamic.

The internal fragmentation can be reduced by effectively assigning the smallest partition but large enough

for the process.

garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime unused memory automatically. In other

words, it is a way to destroy the unused objects.

To do so, we were using free() function in C language and delete() in C++. But, in java it is erformed

automatically. So, java provides better memory management

Main objective of Garbage Collector is to free heap memory by destroying unreachable objects

There are many ways for creating objects eligible for garbage collection:

o By nulling the reference

o By assigning a reference to another

o By anonymous object etc.

The basic process can be described as follows.

Step 1: Marking

The first step in the process is called marking. This is where the garbage collector identifies which pieces of

memory are in use and which are not.

Step 2: Normal Deletion

Normal deletion removes unreferenced objects leaving referenced objects and pointers to free space.

To further improve performance, in addition to deleting unreferenced objects, you can also compact the

remaining referenced objects. By moving referenced object together, this makes new memory allocation

much easier and faster.

Boundary Tag Method.

Assume as given that memory is to be allocated from a large area, in contiguous blocks of

varying size, and that no form of compaction or rearrangement of the allocated segments will be

used. Now from a continuous FREE chunk the required chunk will be allocated (figure A). With

repeated allocation and deallocation(after completion of the process) we could in a scenario as

shown in figure b. Now you can see there are two continuous free chunks, may be freed at

separate timings when the occupying process completed. But they are now as two separate free

chunks of memory and if the next process needed memory more than the individual chunks but

less than both in total then too it would be able to get the space as the two chunks are treated as

two by the system .

Now with boundary tag method each block allocated or free has special tags at the start and end of the

chunk (hence called boundary tag). Besides the length of the chunk, it also contains a flag to indicate if the

chunk is free or allocated. When two such free segments come together the flags at the end of one

segment and the start of the next segment both will have flag marked as free and hence would be merged

adding the length updated and having boundary tags now at the start of the one block and end of the

other block thus effectively merging the free chunks.

After the deallocation of the allocated space

In addition there can be pointers to the next and previous free segment. A sample tag for a free block

could look like this

Fflag and bflag will be false for a free block and true for an allocated block.

BINARY BUDDY SYSTEMS

Buddy system is a trade-off between limited process handling ability of static partitioning and

complication of dynamic partitioning

This buddy system is a memory allocation and management algorithm that manages memory in power

of two increments. Assume the memory size is 2N, suppose a size of S is required.

 If 2N-1<S<=2N: Allocate the whole block

 Else: Recursively divide the block equally and test the condition at each time, when it

satisfies, allocate the block and get out the loop.

System also keep the record of all the unallocated blocks each and can merge these different size blocks

to make one big chunk.

Advantage –

 Easy to implement a buddy system

 Allocates block of correct size

 It is easy to merge adjacent holes

 Fast to allocate memory and de-allocating memory

Disadvantage –

 It requires all allocation unit to be powers of two

 It leads to internal fragmentation

Example –

Consider a system having buddy system with physical address space 128 KB. Calculate the size of

partition for 18 KB process.

Solution –

So, size of partition for 18 KB process = 32 KB. It divides by 2, till possible to get minimum block to fit 18

KB.

FIBONACCI BUDDY SYSTEMS

It is similar to the binary buddy system except the partitioning is not done on factors of 2 but rather the

Fibonacci sequence is used (1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2582,…..)

Lets take an example: We need to allocate 60KB from block of 377KB

Now the memory is like

 55KB FREE 89KB ALLOCATED 233KB FREE

Now lets say 135KB is demanded

Now the memory is like

 55KB FREE 89KB ALLOCATED 89KB ALLOCATED 144KB FREE

